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The spatial problem of the growth and decay of surface waves, which 
arise as a result of the rectilinear motion of a pressure system with 
constant velocity c along a free surface, is investigated. Analogous 
problems are examined in the case of steady motions in El-43. 

1. Starting with the moment of time t = 0. let pressure of the form 

P = poa(x, y) be applied to the horizontal free surface of a fluid 
occupying the half-plane z < 0 and flowing in the positive direction of 
the x-axis with the velocity c. Assuming the motion of the fluid to be 
irrotational, we write the velocity potential in the form 

cft (% ?I, xt tf = c1: i- cp fx, yz x1 $1 

The potential of the perturbed motion q(x, y, z, t) roust satisfy the 
following conditions CZ?: 

Ap, = 0, x<O (i.i) 

i.&t + @+?, -I- zccp,i + c”cp,,, = - W1p,a,, Z--O (i.3) 

cp (5, y, 2, 0) = 0, ‘pI -j- cypx = - pop+a, 2 = 09 tZS0 (1.3) 

In addition, the elevation c(z, y, t) of the free surface of the 
fluid is given by the formula 

Conditions (I.31 express the fact that at the initial moment of time 
there is no perturbed motion and the free surface is horizontal. Apply- 
ing Fourier transforms with respect to the variables .X and y to (1.1) to 
(1.4). we obtain 
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air - (ma + 72%) CD = 0, z<o 0.5) 

mtt + g@, + 2cimQt - macam = - cpslpe imA, z=o (1.6) 

CD (m, n, 2, 0) = 0, @t + imcQ, = - pop-*A, 2 = 0, t--o (1.7) 

Z= - g-l (a, + cim@ + pop’lA),,o (1.8) 

where (0, A, Z are the Fourier transforms of the functions ‘p, a, <. The 
solution of equation (1.5) which satisfies the condition @ - 0 as 
2-- m has the form 

fD = B (m, n, t) e ,? Vn,‘tn’ 
(f.9) 

Satisfying conditions (1.6) to (1.7), we obtain 

B,, + 2cimBt + (g Jfrn” f na- maca) B = - cimP-lFdl 

B (m, n, 0) = 0, B, (m, n, 0) = - POP-‘A 

Hence 

B (m, n, t) = I.$, + &eik” -I- Bs~‘~” (LiO) 

Applying inverse Fourier transforms, we find from formulas (1.8) and 

(1.9) 

6_gp[n f(m, k 4 e i (mx+ny)+t JG3S drn dn 

1 
--a, 

f h n, t) = A h 4 C 2cama a - e 

earns - aa 
eiklt + a ik,t 

cm-a cm +a 1 
fM v== u_ B h n, Oe z lmsdmdn 

(l.ii) 

(l.l2) 

2. Formulas (1.11) and (1.12) give an exact solution to the posed 
problem for au arbitrary function a(x, y). Be shall carry out an 
investigation of these formulas for a function a(x, y) which is equal 
to unity ,in the square 1 XI < b, \yl < b and is equal to zero outside of 
this square. In this case 

A (m 
, 

n) I^ 2 sin mb sin nb 
(2.1) 

IEmn 

We shall assume further that b is small but that p,, is so large that 
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the total pressure force P = pOh2 has a finite value. Taking (2.1) into 
consideration we write expressions (1.11) end (1.12) in the following 
form: 

iVe shall introduce the notations 

m = xrcOse, n = xr sine, x =RCOS~, y=Rsin$ 
X = gc-8, t, = tan c-1, 21 = xz, b, = xb, R, =xR 

Expression (2.3) takes the form 

co “!a n 

V+ - Po lim Re 
J -nZpg*+--a [S 

i (r) P dr 1 , I (r) = 5 f (0) eirR cos (‘-‘) d6 (2.4) 

0 -4 x 

where 

(2.5) 

fl 0% = 
sin (6r cos e) sin (br sin 0) 

r(v/; ~0s 6- 1)sin20 

Bere the index of unity on R, z and b has been omitted for simplicity 
in writing. Since the function c(O) does not have singularities along 
the path of integration - l/2 9~ \< 0 < 3/2 II for any r, including also 
r = 0 since t(e) - 0 as r -. 0, the original path of integration in 
formula (2.5) can then be replaced by the path L which runs along the 
real axis with a bypass around the point 61 by means of a small semi- 
circle in the lower half-plane and around the point 8, in the upper half- 
plane, where 

- rtzn < 0, < 0, 0 <O, <Ifam, cos el; = ~0s ea = r-Sf* 

Along the chosen contour L we have Re [- ir cos 01 < 0. The integral 
(2.5) can now be written as 

I z f1- Is P.6) 

I, = s jl (e) J& eirR coB +-*) 60.3 e de, Is = s jl (e) eiRrM(e) de (2.7) 
(L) &f 

h4 (ej = cos (e -qg - Y [COS e- r-'Al, v = tR--” (2.8) 
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In an analogous manner expression (2.2) can be written in the follow- 

ing form: 

m 

qk-g+l [S 
0 

(K, (r) - K, (r)) 2’ I& dr] (2.9) 

KI = i fl (e) eirR cos (e-4) &j 
9 Ka = \ fl (0) eiRrM@)dtl (2.iO) 

Evaluating the integrals (2.7) for large values of R by the method 
of stationary phase [1,21 for r > 1, we find 

1, = a, + a, + a37 

q = - hi b91 @)I,,, 

1, = b, + b, + b, 

cos*> 6, VT> =Cll, 

(2.11) 

a2 = hi Ires% (e)le,, cosg > 0, r > 1; COST < 0, 1/Y<- SCX~I 

a3 = R-‘/S& (r) eiRU9 

b1 = 2ni [res& (e)le,, O<$<% v < vu r>i 
6, = - 2ni res [I& @)I,,, COS $ > V > COS $ - (r - I)-% sin $, r>i 

bs = R-‘I’d, (r) e i&.(r) 

vi=(Vr--lCosg+sin$)/I/r-1 

Here the integrands of the integrals (2.7) are denoted by ‘t’,(o) and 

y,(6); dl(r). d*(r) denote functions which do not have singularities; 

and the functions ql(r), q2 (r) are real for r > 0. 

From formulas (2. ll), (2.6) and (2.4) we find 

5 = -$--)~oRe[ 5 Ik] 
k=S 

(2.12) 

Here the Ik are determined by the formulas 
Co 

I, = ni s cl (,.) ,[iRf;(cos ,J,-~X r lain+)] dr (““v”><;) (2.13) 

1 

1 w 1 %n 
I, = s s fl (0) 1/r cos f3eirR ‘OS W--&Hzr dfl dr, I, = 

s s 
fi (I3) eiRrM(e)+rrdO dr (2.14) 

0 -%x 0 -‘i,n 

I, = ni El(rle s iRfi (COS ‘& v/r-1 Sin 6) dr 

1 
(cos:;vy) P = c&j, 

a3 

s - 
I,=-ni &(r)e iRfF (cos JI- f/r-l sin 6) dr 

Y 
( cos%yv:) 

(2.15) 
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03 

I, = ni R(d e c iRG (cos ++ f/r-1 Sin 44 dr cosq? > 0 

+ 

‘I 
v>o, 

Is = - 51 i f El (r) eiRfi (‘OS *+ I’-% *In ‘)dr 

1 

( COS I# < v < COS 9 - 3) 

co 

I IO.11 = &, 42 (4 e s 

iRql,2W-fr 

dr, 

In formulas (2.13) to (2.15) 

EI (r) = 
sin b Jf/Tsin b Jfr (r - 1) zr 

r-l e 

Carrying out evaluations of the integrals Zk (k = 4, . . . , 11) for 

large values of R, and taking into consideration that d, (r) , d,(r) and 

the integrands in I, and I, according to (2. 14) do not have singular- 

ities in the region of integration 151, and that the Zk (k = 6,7,8.9) 
do not have stationary points on the path of integration, we find that 

each of these integrals is of order not lower than R-’ and that there- 

fore 

I, + I, + . . . + I,, = 0 (R-1) 

We shall pass on to the investigation of the integral 13; we repre- 

sent it in the following form: 

03 

I * = 2ni s mQhr sin (b&r) sin (bmhrrinhr) 
riohr 

,iRN(t)+zcedr dr (2.16) 

0 

Here 

N (r) =cothr (CO.39 --rinhr sin+), cos$> 9, v>v1= 
rinhr cos$ + sin* 

linhr 

The equation N’(r) = 0 has the roots 

sidrl,z = 
cos* f Jf9 cos?g - 8 

4 sin* 

Since the stationary points of the integrand of (2.16) occur only 

for 0 < P < 19’28’. we obtain for Z, the asymptotic expression for large 

values of R 

ZniR-I” ZA, exp { iR [N (rk) + (- l)“l/,n] + ZCOSII~ rk} (0 <$ < 19”28’) 

13 = 2niR-‘/“A, exp [iRN (rs) + .ZC.M* rs] ($ = 19”28’) 

t 0 (R-l) (19”28’ <I) <n) 
(2.17) 
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A 9 = 3”1s2”dI’ (l/J sin (l/% I/s b) sin (Va 1/2b), dahra = II2 V/z 

From formulas (2.12). (2.15) and ( 2.17) we find the expressions for 
5 for large KR 

711+ rla 

c = (0 [@Ii)-‘1 

(0 < 9 < 19”28’) 

(19”28’ <$ < n) 
(2.18) 

%,2 = 

B,,, (xR)-‘il sin [N (rr,J nR F r/,rcT] 

t 

(R < cful,a (9)) 

0 Iw)-ll @ > ctu1.2 (4% 

For Y = 19O28’ we have 

(2.19) 

B,=-$$A, 6 = 1, 2, 3), &I,2 w = 4 sin29 cosg-&t/9cos%p-8 - + (COS$ & 69 co@* 8) cosp 

We set Y = 0 in the integrals (2.7) and, finding their asymptotic 

value for large KR, we have the following expression for 5 for Y = 0: 

For a pressure which is concentrated at the origin of the coordinate 

system, i.e. 

b2p0 

in the case b - 0, p0 _ m, 

= p = const, formulas (2.18) to (2.20) 
remain valid themselves but the expressions 

for Bk in this case take the following form: 

(2.21) 

B,,=- 
I 

2 Jf2 x2P (cmhrf” 

1 

0 

jf/pg1/9cos2~-8 ' 
r1.2 

B3 = _ 2-‘~s37f%2P 2Jf%GP 

wg ’ 
Bp=-_ 

v fc Pg Fig. 1. 

Thus, the principal perturbations of the free surface are concentrated 

inside the angle 19’28’ > Y > - 19O28 on the left of the curve a& 

(Fig. 1) whose equation has the form R = a,(y)ct. The free surface with- 

the region oabco will be covered by stationary ship waves which repre- 

sent the sum total of the longitudinal waves q2 and the transverse waves 

rll. 
Moreover, the equation of the curve abc has the form R = ctu2(y). 
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The free surface within the region abcda will be covered only by the 

transverse waves ql. The 

elevation of the fluid 

within the angle on the 

right of the curve adc is 
of the same order as the 

elevation outside of the 

angle. The values of 

u1 g(v) are given in the 
table. 

J, 

0" 

g 

9" 
12” 

u, 

b%.i 
0: 983 
0.962 
0.929 

U. I/ J, 

0.500 14” 0.900 0.556 
0.502 16” 0.862 0.580 
0.509 18” 0.807 0.620 
0.520 19” 0.763 0.655 
0.538 19”28 0.706 0.706 

UI 
I 

I l4 

3. We shall now investigate the problem of the decay of the station- 

ary waves generated by the moving pressures under consideration after 

stopping the action of the pressures. The expressions for the potential 

and the fluid elevation which we have obtained in the previous para- 

graph can be written as 

cp = ‘pl - ‘Pm f =51-6ns 

03 

s 

p0a (2, Y) 
cl=& lim Re I,(r)e”dr- pg 

Z-CO 
0 

(3.1) 
0 

00 

s 
1% (r) ezr dr (3.2) 

0 

where 11,2. K,,, are given by formulas (2.7) and (2.10). The contour L 

is chosen so that i2 and 92 tend to zero as t - m; therefore, the sta- 
tionary motion will be determined by the potential ql, and the fluid 

elevation in this case will be determined by formula (3.2). Taking the 

moment of stopping the action of the pressures as the initial time 

(t = 0)) we have the following equations to determine the function 

9(x, Y, I, t). the potential of the decaying wave motion in a coordinate 

system moving with velocity c in the negative direction of the x-axis: 

Acp = 0 z<o (3.3) 

‘pf! + N, + 2e(pxl + ca’p, = 0, z=o 

‘p (2, YV 2, 0) = ‘PI (XV Y, z, 0) (3.4) 

‘Pt + crp, = W+f + c’PIz + P0Pa, 

t = 0, a=0 (3.5) 

Since the function p1 - q2 satis- 
fies the initial conditions (1.3). 

it is then obvious that 

Fig. 2. cp (2, Yt 2, t) = ‘Pa (% YI 2, t) 

will satisfy all the conditions (3.3) to (3.5) therefore, the fluid 
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elevation in the decaying motion will have the form 5 = g2, where $2 is 
given by formula (3.2). Using the results of the investigation of the 
integral I2 given by formula (2.11). we find the following final ex- 
pression for the fluid elevation in the decaying motion for large KR in 
a coordinate system moving with the velocity c 

Here N(r), Bk, rk and uk are given by formulas (2.16), (2.19) and 
(2.21). 

The principal perturbations in the decaying motion will be contained 
inside of the angle 19’28’ >, ‘Y >, - 19O28’ to the right of the curve 06~ 

(Fig. 2). The region abed will be covered only by longitudinal waves 
and the region to the right of the curve a& will be covered by the com- 
plete system of ship waves. 

As t - ~0 the amplitude of oscillations of the free surface in all 
regions of the fluid tends to zero like a quantity of order (gc -It)-1, 
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