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The spatial problem of the growth and decay of surface waves, which
arise as a result of the rectilinear motion of a pressure system with
constant velocity ¢ along a free surface, is investigated. Analogous
problems are examined in the case of steady motions in [1-4}.

1. Starting with the moment of time t = 0, let pressure of the form
P = pga(x, y) be applied to the horizontal free surface of a fluid
occupying the half-plane z < 0 and flowing in the positive direction of
the x-axis with the velocity c¢. Assuming the motion of the fluid to be
irrotational, we write the velocity potential in the form

Oz, 2, ) =c2+9(2,9 21

The potential of the perturbed motion ¢(x, y, z, t) must satisfy the
following conditions [2]:

Ag = 0, 2 <0 (1.1)
Qi T 89; + 209y + Py = — cp"Ipea,,  z2=0 (1.2)
¢ (z,y, 20 =0, P, -+ P, == PoP " la, z =0, t=0 (1.3)

In addition, the elevation ((x, y, t) of the free surface of the
fluid is given by the formula

L =— gt lg + co. + pop~lal,_, (1.9

Conditions (1.3) express the fact that at the initial moment of time
there is no perturbed motion and the free surface is horizontal. Apply-
ing Fourier transforms with respect to the variables x and y to (1.1) to
(1.4), we obtain
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D,, — (m?+ n?) O =0, 20 (1.5)

O, + g®, + 2cim®; — mPEQ = — cp~lpy imAd, z2=0 (1.6)

@ (m, n, z,0) =0, D, 4 ime® = — pp~l4, z =0, t=20 (1.7)
Z = — g1 (®; + eim® 4+ pp~id),_, (1.8)

where ®, A, Z are the Fourier transforms of the functions ¢, a, (. The
sclution of equation (1.5) which satisfies the condition ¢ ~ 0 as
z =~ - © has the form

@ = B (m, n, 1) & VOO 1.9)

Satisfying conditions (1.6) to (1.7), we obtain

By + 2¢cimB, + (g V' m?* + n*— m%?* B = — cimp~'pyd
B (m, n, 0) = 0, B, (m, n, 0) = — pep~'4
Hence
B (m, n, §) = By + Byelfit 4 Byttt (1.10)
Bo=Smped g oA o —emia, o =YE @D

p [ —eal]’ L2 2p [em Fal’

Applying inverse Fourier transforms, we find from formulas (1.8) and
(1.9)

(o]
t=_P_ lim [SS f(m, n, 1) & meeniz Vrind gy, dn] (1.11)
TPE z—+—0
—00
_ 2c2m? a it Q ikyt
flmm ) = Alm, [ 2P — 2t ]
o0
=LSSB(m n, B et Vm’*ﬂ'd dn 1.12)
23 £ 3

2. Formulas (1.11) and (1.12) give an exact solution to the posed
problem for an arbitrary function a(x, y). We shall carry out an
investigation of these formulas for a function a(x, y) which is equal
to unity in the square le < b, yl < b and is equal to zero outside of
this square. In this case

2 sin mb sin nb @1
nmn

A (m, n) =

We shall assume further that b is small but that Pg is so large that
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the total pressure force P = p052 has a finite value. Taking (2.1) into
consideration we write expressions (1.11) and (1.12) in the following
form:

o= —- Im [S Al n) (1 — efil) gt tmxtni)+2 Vmim?® 4, dn} 2.2)
{em — o)

—00
o0
(=2 lim {ae SS %ﬁ.’.’b_’;} (em — aethity g (metny)rz Vit 4, dn] (2.3)
—co

We shall introduce the notations

m = ®r ¢cos9, n == %rsin@, z = R cosv, y = R siny
% = gc™%, ; =wnc¢"l, zy =%z by =ub, Ry==uxR

Expression (2.3) takes the form

oo a7
t =P Jim Re [g 1(n) e dr] : 1() = g £ (8) TR CO3 (-0 gp (2 4
TP z——0
0 ~lfy
where
2(0) = £, (0 [V; oS 6 — e-—-iVT (V7 cos 6—1)1} 2.5

sin (br cos @) sin (br sin 8)
r{V'rcos 08— 1)sin 20

fi(0) =

Here the index of unity on R, z and b has been omitted for simplicity
in writing. Since the function §(0) does not have singularities along
the path of integration - 1/2 w X0 <3/2 7 for any r, including also
r = 0 since §(6) - 0 as r =~ 0, the original path of integration in
formula (2.5) can then be replaced by the path L which runs along the
real axis with a bypass around the point 61 by means of a small semi-
circle in the lower half-plane and around the point 62 in the upper half-
plane, where

— Y LB, <0, 0By <Yyn,  cos B = cosly = r

Along the chosen contour L we have Re [— ir cos 6] < 0. The integral
{(2.5) can now be written as

I=I—1 (2.6)

L= 10 VrdRseDesoam, L= nOFMPp @)
(L) (L)

M@® =cos(®—P) — v [cos0—~ r—B], v=¢tR {2.8)



1112 L.V. Cherkesov

In an analogous manner expression (2.2) can be written in the follow-
ing form:

oo}
cPo zr 1
Q= — qipg Im [§ Ky () — Ka () € 7= dr] 2.9)
K, = S fl C)] eirR cos (8—1¢) do, Ky = S fl G)) eiRI‘M(O) 40 (2_10)
(L) (L)

Evaluating the integrals (2.7) for large values of R by the method
of stationary phase [1,2] for r > 1, we find

I, = ay + ay + aj, Iy = by + by + b, 2.11)
ay = — 2ni [res; (B)]y, cosp >0, V5> secy
ay = 2nti [res P, (B)]y, cosp >0, r>1; cosp <0, Vr<—secy
ag = R—'/xdl ) B
by = 2nifrese (0)]p, O0<Pp<Ta, v<v, r>1
by = — 2mires [, ()], cosPp > v > cosp — (r— 1) "M sin, r>1
by — R dy (1) eiRQ:(")
vi=(Vr—Tcosy+siny)/ V5r—1

Here the integrands of the integrals (2.7) are denoted by WI(O) and
Yz(e); dl(r), dz(’) denote functions which do not have singularities;
and the functions gq,(r), g,(r) are real for r > 0.

From formulas (2.11), (2.6) and (2.4) we find
11

— P im Re[ I ] 2.12
¢ 7%pg 20 ;El k (.12
Here the Ik are dg}ermined by the formulas
Iy = mi S N0 iRV (cos y—Vr—isin )} 4, (CO‘S 1]J>>v10) (2.13)
1
1 %mn 1 Ym
I‘ — S S fl (6) V'; cos ee‘iTR cos (8—¢)+zr do d", 15 —_ S S fl (e) ethM(ﬂH-zr d0 dr (2.14)
[/ 0 —1ym
H $ <0 1
_ . iRV (cos b— Vr—1sin ) cos (‘I’ = )
Iy = :l'ulg B (et T r dr ( V> o
oo
j A niS E,(r) eiRV?(cos kb—-V;jlsindu)dr (cos¢<0)
o) v v

(2.15)
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(e o]
I = mg ) (,.)eRV— (cossb+'Vr—~1sm¢v)d (COS‘I’>O\

¥ v>0/

w .
Jp = — nlg g r)eiRV;(cosdﬂ-{-l’r——lslnq))dr <005¢<V<cosnp—-;m‘pi)

r—
1
1 iRqy g (r)t2r
Tyoq = Vﬁg dyg(r)e dr,

1

In formulas (2.13) to (2.15)

sinb Vrsinb ¥Vr(r—1) &
&)= r—1

Carrying out evaluations of the integrals I, (k =4, ..., 11) for
large values of R, and taking into consideration that d (r), dy(r) and
the integrands in I and I according to (2.14) do not have singular-
ities in the region of 1ntegrat10n [5] and that the I, (k =6,7,8,9)
do not have stationary points on the path of integration, we find that
each of these integrals is of order not lower than R-1 and that there-
fore

I+ Ig+ ...+ Iy = 0(R™Y)
We shall pass on to the investigation of the integral I3; we repre-

sent it in the following form:

cosh 7 Sin (beosh r) sin (bcoshF sinh r) ARN()+zcomb?r 5
sinh 7

Iy = 2ni S (2.16)
0
Here
sinh 7 oS -+ sin P
sinh 7

N (r) =coshr (cOsp — sinh F sin ), cosPp > 0, V> =

The equation N'(r) = 0 has the roots

cosP 4 ¥V 9 cos?p — 8
4 siny

712

Since the stationary points of the integrand of (2.16) occur only
for 0 < ¥ < 19°28°, we obtain for I, the asymptotic expression for large
values of R

2iR™ 24, exp {iR [N (r)) + (— V)Y @] + zoom? r,} (0 < < 19°28)
Is =4 20iR1 A5 exp [iRN (rg) + zcosn? rg) (P = 19°28")

0 (R™Y) (19°28" < <(2n2’-')
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k=1,2)

4 [Vcoa-_;; V 27 sin (beosnr) sin (beosh 7 sinh7)
4§ :inhr]g/QcosWJ—S -

Ay = 3%s2'AT (1) sin (Y, V'38) sin (/3 V' 2b),  siohry =Y, V2

From formulas (2.12), (2.15) and (2.17) we find the expressions for
{ for large xR

™+ M 0 <y <19%28) 2.18
B {o [R)™] (19°28' < < m) “1o
_ {31'2 (MR)_I'[' sin [N (r1’2) ®R F 1/ (R < Ctul,z ()
1270 [R)™ (R > ctuy 5 (¥)
For ¥ = 15928’ we have
= {Bx (MR)—:/’ sin (1/, V' 3xR) (R <Y,y V%"t) (2.19)
0 [wR)™ /s} R >1Y, VZ ct)

2p cos V G costp — 8
Bk:’—;{[_)%'Ak (k: 1, 2, 3), ul’g (‘p)—" ‘pi .Q)

" 4sin?y + (cosp £ ¥V 9 costp — 8) cosp

We set Y = 0 in the integrals (2.7) and, finding their asymptotic
value for large xR, we have the following expression for { for Y = o:

_ {B. (R) 7sin (xR + Yy (R <eb) ( By~ — 2V 2ppsinb ) 2.20)
o (xR (R>ct) V neg

For a pressure which is concentrated at the origin of the coordinate
system, ji.e. in the case b - 0, Py ™ @
b%p, = P = const, formulas (2.18) to (2.20)
remain valid themselves but the expressions
for B, in this case take the following form:

(2.21)
B 2 V2 w2P (costr)
L2 Vapg ¥V IcosFy—8 F12,
wlfl 7]’1 ?
By —2 WP p 2,1(,;%&”
npg V npg

Thus, the principal perturbations of the free surface are concentrated
inside the angle 19°28° > ¥ >> - 19°28' on the left of the curve ade
(Fig. 1) whose equation has the form R = uy{p)ct. The free surface with-
the region oabco will be covered by stationary ship waves which repre-
sent the sum total of the longitudinal waves n, and the transverse waves
N,. Moreover, the equation of the curve abc has the form R = ctu,(y).
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The free surface within the region abcda will be covered only by the
transverse waves n,. The
elevation of the fluid
within the angle on the
right of the cyrve ade is

000 0.500 114° 0.900 0.556 of the same order as the

Y U \ Ug ’ ¢ Uy Uy

0° | 1.
g° 0}936 0.502 [[16° 0.862 O.ggg elevation outside of the
> | 0.983 | 0.509 [18° | 0.807 | o.

9° | 0.962 | 0.520 [19° | 0.763 | 0.655 onele. The values of

122 | 0920 | 0.538 19°28| 0.706 | 0.706 u; ,(y) are given in the

table.

3. We shall now investigate the problem of the decay of the station-
ary waves generated by the moving pressures under consideration after
stopping the action of the pressures. The expressions for the potential
and the fluid elevation which we have obtained in the previous para-
graph can be written as

[o0]
P =91 — Pa £ =C0:—2Ca P g=— nng Im& 12(r) e¥dr (3.1)
o0 0 [o0]
L, nfpg lim Reg I () dr — Mg‘—'—y—) y b= nfpg lim Reg I,(nedr (3.2)
0 0

where 11'2, Kl'2 are given by formulas (2.7) and (2.10). The contour L
is chosen so that ;2 and ¢, tend to zero as t - ®; therefore, the sta-
tionary motion will be determined by the potential P1» and the fluid
elevation in this case will be determined by formula (3.2). Taking the
moment of stopping the action of the pressures as the initial time

(t = 0), we have the following equations to determine the function

¢(x, y, z, t), the potential of the decaying wave motion in a coordinate
system moving with velocity ¢ in the negative direction of the x-axis:

y Ap =10 20 3.3)
P+ 8P, + 29y + PP =0, z—=0
¢ (z, 9,320 = 1 (z, v, 2, 0) (3.4)

0 P, + Py = Py + Py + pop-la’

== 0, z=20 (3.5)

Since the function ¢, - ¢, satis-
fies the initial conditions (1.3),
it is then obvious that

Fig. 2. P (x’ Y, 2, t) = Q3 (xi Y, %z, t)

will satisfy all the conditions (3.3) to (3.5) therefore, the fluid
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elevation in the decaying motion will have the form { = (,, where {, is
given by formula (3.2). Using the results of the investigation of the
integral I2 given by formula (2.11), we find the following final ex~
pression for the fluid elevation in the decaying motion for large k& in
a coordinate system moving with the velocity ¢

t= {n; + 7, (0 <y < 19°28)
TlO IRy (19028 <P K w)

_ {Bm (xR)sin [N (r, ) FYql (B> ctuy, ()

" 10 (xRY (R < ctu, o (§))
- {B’ Ry sin (Y3 V3xR) (R>Y,V 2ct, b= 19°28)
o 1Ry~ R<Y,VEe, = 19°28)
_ {B‘ R Msin R + Y1) RB>et, =0
~ o xRy R<et, =0

Here N(r), Bk' r, and u, are given by formulas (2.16), (2.19) and
{2.21).

The principal perturbations in the decaying motion will be contained
inside of the angle 19928° > ¥ >~ 19°28° to the right of the curve abe
(Fig. 2). The region abed will be covered only by longitudinal waves
and the region to the right of the curve adc will be covered by the com-
plete system of ship waves.

As t = ® the amplitude of oscillations of the free surface in all
regions of the fluid tends to zero like a quantity of order (gc‘lt)‘l.
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